Functoriality and small eigenvalues of Laplacian on Riemann surfaces

نویسندگان

چکیده

منابع مشابه

Small Eigenvalues of the Laplace Operator on Compact Riemann Surfaces by Burton Randol

Let Sf be a compact Riemann surface, which we will assume to have curvature normalized to be — 1 , and let 0=A0<A1^A2^• • be the eigenvalues corresponding to the problem AF+AF=0 on Sf \ where A is the Laplacian for £P. In an otherwise very interesting and useful paper [2], McKean has stated that it is always the case that A ^ J. In this paper, we will show that this need not be true, and that i...

متن کامل

Small Eigenvalues of the Conformal Laplacian

We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.

متن کامل

Some remarks on Laplacian eigenvalues and Laplacian energy of graphs

Suppose μ1, μ2, ... , μn are Laplacian eigenvalues of a graph G. The Laplacian energy of G is defined as LE(G) = ∑n i=1 |μi − 2m/n|. In this paper, some new bounds for the Laplacian eigenvalues and Laplacian energy of some special types of the subgraphs of Kn are presented. AMS subject classifications: 05C50

متن کامل

Bounds on normalized Laplacian eigenvalues of graphs

*Correspondence: [email protected] 1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, P.R. China 2Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, P.R. China Full list of author information is available at the end of the article Abstract Let G be a simple connected graph of order n, where n≥ 2. Its normalized Laplacian eigenvalues are 0 = λ1 ...

متن کامل

On Laplacian Eigenvalues of a Graph

Let G be a connected graph with n vertices and m edges. The Laplacian eigenvalues are denoted by μ1(G) ≥ μ2(G) ≥ ·· · ≥ μn−1(G) > μn(G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for μ1(G)+ · · ·+μk(G) and lower bounds for μn−1(G)+ · · ·+μn−k(G) in terms of n and m, where 1 ≤ k ≤ n−2, and characterize the extremal cases. We also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Surveys in Differential Geometry

سال: 2004

ISSN: 1052-9233,2164-4713

DOI: 10.4310/sdg.2004.v9.n1.a11